analysis techniques. 0000002507 00000 n
�;z��,[XӺ����� ��0��"b�.Zߙ"f�-
ģ������-��w��R��ϫC5�$ g��@n�'�.�*f>y
�q data, and as new avenues of data exploration are revealed. Data analysis is a process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making. Conclusion. Norman Denzin an\
d Yvonna Lincoln, eds. Data analysis techniques allow researchers to review gathered data and make inferences or determination from the information. 0000019900 00000 n
–Confirmatory Data Analysis-confirming or falsifying existing hypotheses. provides methods for data description, simple inference for con-tinuous and categorical data and linear regression and is, therefore, sufficient to carry out the analyses in Chapters 2, 3, and 4. Documentation Conceptualization, Coding, and Categorizing. stand something of the range of modern1 methods of data analysis, and of the considerations which go into choosing the right method for the job at hand (rather than distorting the problem to t the methods you happen to know). By using complex financial and statistical models, quantitative analysis can objectively quantify business data and determine the effects of a decision on the business operations. There are a wide variety of qualitative data analysis methods and techniques and the most popular and best known of them are: 1. While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on … Build a data management roadmap. 393,398) John Lofland & Lyn Lofland Ideally, categories should be mutually exclusive and exhaustive if possible, often they aren't. 0000012344 00000 n
–Exploratory Data Analysis - discovering new features in the data. provides methods for data description, simple inference for con-tinuous and categorical data and linear regression and is, therefore, sufficient to carry out the analyses in Chapters 2, 3, and 4. Impact evaluations should make maximum use of existing data and then fill gaps with new data. The purpose of Data Analysis is to extract useful information from data and taking the decision based upon the data analysis. Typically descriptive statistics (also known as descriptive analysis) is the first level of analysis. The two most commonly used quantitative data analysis methods are descriptive statistics and inferential statistics. A summary of the key points and practice problems in the CFA Institute multiple-choice format conclude the reading. 15 Methods of Data Analysis in Qualitative Research Compiled by Donald Ratcliff 1. The systematic application of statistical and logical techniques to describe the data scope, modularize the data structure, condense the data representation, illustrate via images, tables, and graphs, and evaluate statistical inclinations, probability data, to derive meaningful conclusions, is known as Data Analysis. Because techniques are tied neither to paradigms nor to methods, com-binations at the technique level permit innovative uses of a range of techniques for a variety of pur-poses. The two most commonly used quantitative data analysis methods are descriptive statistics and inferential statistics. 0000001248 00000 n
�F��\\\ R�@5���4��b`KK�@�b3���e@V1[@�� �,n0yfc�-a >kT�� 1�9l��pf.�4+�3��1@����V be��0�z,et*Pm8��G|�^����
�. Tj ET EMC
endstream
endobj
127 0 obj
<<
/Type /Font
/Name /TiRo
/BaseFont /Times-Roman
/Subtype /Type1
/Encoding 128 0 R
>>
endobj
128 0 obj
<<
/Type /Encoding
/Differences [ 24 /breve /caron /circumflex /dotaccent /hungarumlaut /ogonek /ring
/tilde 39 /quotesingle 96 /grave 128 /bullet /dagger /daggerdbl
/ellipsis /emdash /endash /florin /fraction /guilsinglleft /guilsinglright
/minus /perthousand /quotedblbase /quotedblleft /quotedblright /quoteleft
/quoteright /quotesinglbase /trademark /fi /fl /Lslash /OE /Scaron
/Ydieresis /Zcaron /dotlessi /lslash /oe /scaron /zcaron 160 /Euro
164 /currency 166 /brokenbar 168 /dieresis /copyright /ordfeminine
172 /logicalnot /.notdef /registered /macron /degree /plusminus
/twosuperior /threesuperior /acute /mu 183 /periodcentered /cedilla
/onesuperior /ordmasculine 188 /onequarter /onehalf /threequarters
192 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex
/Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis
/multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute
/Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis
/aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave
/iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex
/otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex
/udieresis /yacute /thorn /ydieresis ]
>>
endobj
129 0 obj
<<
/ProcSet [ /PDF /Text ]
/Font << /F2 136 0 R /F4 147 0 R /F5 138 0 R /F7 133 0 R /F11 142 0 R /F13 144 0 R >>
/ExtGState << /GS1 154 0 R /GS2 149 0 R >>
>>
endobj
130 0 obj
<< /Filter /FlateDecode /Length 140 /Subtype /Type1C >>
stream
What is Data Analysis? After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. Qualitative Data Analysis Methods And Techniques. proliferation: a variety of methods and approaches for data analysis have been developed and spelled out in the methodol-ogy literature mainly in the original disci-plines. �akW`}X�b[� ]�4I�\acMNJ/�-[�u�D�)���DR2ER�dٲ-�RGI�����u�X�uÆa(�b�C��� Data Analysis Techniques For High Energy Physics Experiments Data Analysis Techniques For High Energy Physics Experiments by R. K. Bock. • Analysis of secondary data, where “secondary data can include any data that are examined to answer a research question other than the question(s) for which the data were initially collected” (p. 3; Vartanian, 2010) • In contrast to primary data analysis in which the same individual/team methods for collecting and analyzing words or phrases. � �+"?�8j�A�Qlm��+��W�\�'�sYa��vw�Ru�q��jH!�s�$1����"0��A6u/��E�D9�|u�8"��k��!��K�4��8☃.�%ԃ
#ت�y�Ϫ3Wn�~��H��/�({P��S˝��Dx}'�뺼"j���^6��^+B`�^w �'��G�l��@��r���:��y"=Q��܄p����DU/��^tW� Data analysis is defined as a process of cleaning, transforming, and modeling data to discover useful information for business decision-making. <> "Data analysis is the process of bringing order, structure and meaning to the mass of collected data. Descriptive Statistics. Considerations The data collection, handling, and management plan addresses three major areas of concern: Data Input, Storage, Retrieval, Preparation; Analysis Techniques and Tools; and Analysis Mechanics. (Patton pp. �~���F(O7.�%�HJnJ �N��3�F+l���P��B��c�>�ڶlŋd�yo*�i�ψ��%+�0�z�i�Ӣb�0�X$x�ag�iFu)�]ڊ���k��������֣�UL�\G��fd-� (vi) Research involves gathering new data from primary or first-hand sources or using existing data for a new purpose. 0000002146 00000 n
endstream
endobj
131 0 obj
<<
/Type /FontDescriptor
/Ascent 0
/CapHeight 0
/Descent 0
/Flags 4
/FontBBox [ -1 -198 999 806 ]
/FontName /GJMLDI+MSTT31c480
/ItalicAngle 0
/StemV 0
/CharSet (/G75/G6E)
/FontFile3 130 0 R
>>
endobj
132 0 obj
<<
/Type /FontDescriptor
/Ascent 0
/CapHeight 0
/Descent 0
/Flags 32
/FontBBox [ -167 -249 1396 963 ]
/FontName /GJMLDK+ClassicalGaramondBT-Bold
/ItalicAngle 0
/StemV 114
/XHeight 0
/CharSet (/t/a/four/u/five/k/comma/d/l/m/w/W/hyphen/L/six/seven/n/y/T/period/b/B/o\
/ampersand/A/c/p/nine/zero/H/e/D/parenleft/one/space/r/f/E/two/parenrigh\
t/h/s/R/F/g/i/G)
/FontFile3 152 0 R
>>
endobj
133 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F7
/FirstChar 0
/LastChar 255
/Widths [ 500 278 278 278 278 500 500 278 500 278 500 500 500 278 278 278 278
278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278
333 339 769 556 1000 937 175 333 333 500 833 278 333 278 278 556
556 556 556 556 556 556 556 556 556 333 333 833 833 833 445 986
715 657 715 778 611 549 771 845 363 387 714 602 993 831 838 561
838 676 495 715 771 715 993 771 715 715 333 278 333 1000 500 500
495 556 440 556 444 324 495 556 278 278 550 278 822 556 556 556
556 389 389 333 556 495 771 556 496 440 500 500 500 833 278 278
278 278 556 486 1000 500 500 500 1431 495 278 1021 278 278 278 278
278 278 486 486 590 500 1000 500 822 389 278 799 278 278 715 278
333 556 556 606 606 500 500 500 822 371 468 833 833 822 500 329
833 367 367 500 578 500 278 500 367 417 468 867 867 868 445 715
715 715 715 715 715 947 715 611 611 611 611 363 363 363 363 778
831 838 838 838 838 838 833 838 771 771 771 771 715 569 556 495
495 495 495 495 495 720 440 444 444 444 444 278 278 278 278 556
556 556 556 556 556 556 833 556 556 556 556 556 496 556 496 ]
/Encoding 135 0 R
/BaseFont /GJMLDK+ClassicalGaramondBT-Bold
/FontDescriptor 132 0 R
>>
endobj
134 0 obj
<<
/Type /Encoding
/Differences [ 127 /G7F 128 /G80 ]
>>
endobj
135 0 obj
<<
/Type /Encoding
/Differences [ 0 /grave 5 /breve /dotaccent 8 /ring 10 /hungarumlaut /ogonek /caron
/dotlessi 39 /quotesingle 96 /grave 130 /quotesinglbase /florin
/quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand
/Scaron /guilsinglleft /OE 145 /quoteleft /quoteright /quotedblleft
/quotedblright /bullet /endash /emdash /tilde /trademark /scaron
/guilsinglright /oe 159 /Ydieresis 164 /currency 166 /brokenbar
168 /dieresis /copyright /ordfeminine 172 /logicalnot /minus /registered
/macron /degree /plusminus /twosuperior /threesuperior /acute /mu
183 /periodcentered /cedilla /onesuperior /ordmasculine 188 /onequarter
/onehalf /threequarters 192 /Agrave /Aacute /Acircumflex /Atilde
/Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis
/Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute
/Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute
/Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute
/acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute
/ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide
/oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis
]
>>
endobj
136 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F2
/FirstChar 0
/LastChar 255
/Widths [ 500 278 278 278 278 500 500 278 500 278 500 500 500 282 278 278 278
278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278
334 331 769 556 898 861 170 333 333 500 833 278 333 278 278 556
556 556 556 556 556 556 556 556 556 333 333 833 833 833 440 986
617 593 706 771 632 574 787 822 340 333 648 606 873 792 825 544
825 613 491 616 701 595 887 634 569 639 333 278 333 1000 500 500
493 528 434 528 437 317 449 532 282 282 505 292 836 556 532 530
497 356 366 345 553 488 757 509 500 428 500 500 500 833 278 278
278 278 556 493 1000 500 500 500 1308 491 278 1041 278 278 278 278
278 278 493 493 590 500 1000 500 822 366 278 755 278 278 569 278
334 556 556 606 556 500 500 500 822 370 449 833 833 822 500 329
833 367 367 500 547 500 278 500 367 399 449 867 867 868 440 617
617 617 617 617 617 937 706 632 632 632 632 340 340 340 340 771
792 825 825 825 825 825 833 825 701 701 701 701 569 553 509 493
493 493 493 493 493 687 434 437 437 437 437 282 282 282 282 532
556 532 532 532 532 532 833 532 553 553 553 553 500 530 500 ]
/Encoding 135 0 R
/BaseFont /GJMLDC+ClassicalGaramondBT-Italic
/FontDescriptor 137 0 R
>>
endobj
137 0 obj
<<
/Type /FontDescriptor
/Ascent 0
/CapHeight 0
/Descent 0
/Flags 96
/FontBBox [ -167 -237 1275 963 ]
/FontName /GJMLDC+ClassicalGaramondBT-Italic
/ItalicAngle -10.5
/StemV 82
/XHeight 0
/CharSet (/S/t/eacute/a/acute/four/j/I/U/u/K/five/k/v/comma/J/V/l/d/m/L/hyphen/W/w\
/question/six/seven/n/M/T/period/y/dieresis/b/A/N/Y/o/z/B/eight/c/C/O/Z/\
x/p/quoteright/H/e/D/P/q/colon/nine/one/zero/space/E/r/f/semicolon/Q/two\
/ydieresis/h/F/R/s/g/parenleft/three/parenright/i/G)
/FontFile3 150 0 R
>>
endobj
138 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F5
/FirstChar 32
/LastChar 255
/Widths [ 250 1000 1000 1000 1000 833 944 833 889 1000 1000 1000 667 1000 1000
1000 1000 1000 1000 778 944 833 1000 778 833 889 889 833 856 556
722 722 778 778 833 889 889 833 889 889 877 877 833 889 944 889
889 889 944 708 708 889 889 1000 833 889 877 877 889 708 778 708
778 833 889 944 833 778 833 778 778 778 778 722 833 833 1000 907
1000 1000 1000 1000 1000 1000 1000 1000 833 500 231 400 579 667
667 1000 1000 250 444 444 389 389 338 338 514 514 551 551 278 278
500 500 250 250 250 250 250 250 250 250 250 250 250 250 250 250
250 250 250 250 250 722 556 667 1000 722 1000 1000 778 778 778 778
822 822 822 822 822 822 822 822 822 822 822 822 822 822 822 822
822 822 822 822 822 822 822 822 822 822 822 822 822 822 822 822
822 822 822 822 822 822 822 822 1000 833 1000 417 889 1000 889 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 500 1000
1000 1000 1000 1000 889 889 1000 250 1000 1000 1000 1000 1000 1000
944 1000 944 1000 1000 1000 1000 1000 250 ]
/Encoding 134 0 R
/BaseFont /GJMLDI+MSTT31c480
/FontDescriptor 131 0 R
>>
endobj
139 0 obj
<<
/Type /Encoding
/Differences [ 0 /grave 5 /breve /dotaccent 8 /ring 10 /hungarumlaut /ogonek /caron
/dotlessi 39 /quotesingle 96 /grave 124 /bar 130 /quotesinglbase
/florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand
/Scaron /guilsinglleft /OE 145 /quoteleft /quoteright /quotedblleft
/quotedblright /bullet /endash /emdash /tilde /trademark /scaron
/guilsinglright /oe 159 /Ydieresis 161 /exclamdown /cent /sterling
/currency /yen /brokenbar /section /dieresis /copyright /ordfeminine
/guillemotleft /logicalnot /minus /registered /macron /degree /plusminus
/twosuperior /threesuperior /acute /mu /paragraph /periodcentered
/cedilla /onesuperior /ordmasculine /guillemotright /onequarter
/onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex
/Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex
/Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash
/Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls
/agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla
/egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex
/idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis
/divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute
/thorn /ydieresis ]
>>
endobj
140 0 obj
<< /Filter /FlateDecode /Length 2533 /Subtype /Type1C >>
stream
For sure, statistical techniques are the most favored to analyze numerical data. After these steps, the data is ready for analysis. Big Data Analysis Techniques. The purpose of Data Analysis is to extract useful information from data and taking the decision based upon the data analysis. 0000004372 00000 n
,��� 5!������$�I�+�R��z@��BN�c�����̼��;�,� 3jD�1#r"�-�5��8U_m�rDbD����y��I�a���5��3>ʏ�����W&1�V!�C*�@�ŕ5�v�5���7?�~w�5g��hfB�p J�R�5�S�@?�*uP/+�D��9ύ������p����:;�.^��*8oY�U�tb~N���^�u� �9Oa���V�D%i��Δ.CF�ˊ@�e%� ��sj
1_��M6Xc�t�a1�h��8D}��4�!�����1��1����Z�*�\�z8!�K0/g�:��t+�-{�e��1��A�h&b=?4wX^�|���L�$�q��0� D�li Y�b�
��=M�Cd&C,�Gfs>%����ZCk�@���M�ܜ�R0�cg�����i�o�C�?hY! Qualitative data coding . >>
endobj
126 0 obj
<< /Length 234 /Subtype /Form /BBox [ 0 0 325.38908 73.84717 ] /Resources << /ProcSet [ /PDF /Text ] /Font << /TiRo 127 0 R >> >> >>
stream
using qualitative data methods rather than the quantitative techniques ... (2000) and Heaton (2004). The e-book explains all stages of the research process starting from the selection of the research area to … 1. 0000045027 00000 n
stream ��7 ��(�T�h7��:�>� ��Ϻ��]����T�-ռ��wU@ic��������o�L�"1���qz�#W|�gP��HE(I*�T�F��,�W�C֡k� Second, they identify the qualitative data analysis techniques best suited for analyzing these data. What is Data Analysis? Academia.edu is a platform for academics to share research papers. In this chapter, we consider the methods of data analysis that are most frequently used with focus group data. A few of the more popular quantitative data analysis techniques include descriptive statistics, exploratory data analysis and confirmatory data analysis. � Quantitative Data Analysis Methods. 0000016776 00000 n
Up-dated indispensable guide to handling and analysing data obtained from high … Data collection and analysis methods should be chosen to match the particular evaluation in terms of its key evaluation questions (KEQs) and the resources available. Data analysis is defined as a process of cleaning, transforming, and modeling data to discover useful information for business decision-making. 7. Data & Data Analysis Data Analysis –process of looking at and summarizing data to extract useful information and develop conclusions. @�&��-
΄F�d���� data, and as new avenues of data exploration are revealed. 2 If that’s any indication, there’s likely much more to come. The purpose of this module is to describe the fundamentals of implementation research (IR) methodologies including study design, data collection methods, data analysis, presentation and interpretation of IR findings with the objective of enhancing their uptake and use by target audiences. (vii) Research is characterized by carefully designed procedures that apply rigorous analysis. Interviews are widely used in case studies and ethnographies, but can also be used in surveys, action research and research through design. �aj�'M��`���Ʉ $�����h��G��K4`�xAA���r[�� Sage Publications. analysis techniques. ���M&\%R �s�@p�H�9�dz:Cai��� 8��)�t�9~�P.�S��Ȩg
��y Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. 0000009803 00000 n
%�쏢 Techniques of Qualitative Data Analysis. terminology of data analysis, and be prepared to learn about using JMP for data analysis. This approach will follow patterns and strategies of high-frequency trading in order to identify the correlation between the variables present to be able to determine if an investment will truly be worth it. 5 0 obj 0000021809 00000 n
Program staff are urged to view this Handbook as a beginning resource, and to supplement their knowledge of data analysis procedures and methods over time as … Third, they introduce what they term as a micro-interlocutor analysis, wherein meticulous 7.2 Exploratory Data Analysis 233 8 Randomness and Randomization 241 8.1 Random numbers 245 8.2 Random permutations 254 8.3 Resampling 256 8.4 Runs test 260 8.5 Random walks 261 8.6 Markov processes 271 8.7 Monte Carlo methods 277 8.7.1 Monte Carlo Integration 277 8.7.2 Monte Carlo Markov Chains (MCMC) 280 9 Correlation and autocorrelation 285 Techniques for data collection include free lists, pile sorts, frame elicitations, and triad tests. There are a wide variety of qualitative data analysis methods and techniques and the most popular and best known of them are: 1. A few of the more popular quantitative data analysis techniques include descriptive statistics, exploratory data analysis and confirmatory data analysis. Clean your data After these steps, the data is ready for analysis. 7.2 Exploratory Data Analysis 233 8 Randomness and Randomization 241 8.1 Random numbers 245 8.2 Random permutations 254 8.3 Resampling 256 8.4 Runs test 260 8.5 Random walks 261 8.6 Markov processes 271 8.7 Monte Carlo methods 277 8.7.1 Monte Carlo Integration 277 8.7.2 Monte Carlo Markov Chains (MCMC) 280 9 Correlation and autocorrelation 285 Data Analysis Techniques For High Energy Physics Experiments Data Analysis Techniques For High Energy Physics Experiments by R. K. Bock. Typology - a classification system, taken from patterns, themes, or other kinds of groups of data. Impact evaluations should make maximum use of existing data and then fill gaps with new data. there are additional methods of analysis that may be appropriate for certain purposes. H�bd`ad`ddr���q���
16L6�0 �����������.֛w� N�.&������.�nn�n护���)��������YP���W��߆��t~���a�|? R6`K�T��x���ڌ��������&"�q��Ԏ"���Z!��S;�����2'~����C�`
����q���I�xS �Tw`-x,x�F�A�������`�j�Ju���&չj�:�I1�0~�����a$��� B&��&�ǎ*����˜�&pB2�t��O���1#"'�b